US 2005/0005261 Al

datatype in the static diagram to create a datatype descriptor.
The packages handler handles each package in the static
diagram to create a package descriptor. The interfaces han-
dler handles each interface in the static diagram to create an
interface descriptor. The models handler handles each model
in the static diagram to create a model descriptor. The signals
handler handles each signal in the static diagram to create a
signal descriptor. The associations handler handles each
association in the static diagram to create a model descriptor
which is a process entity for that association.

[0463] In FIGS. 10 and 11, the method to convert model
state charts to model state enumerations and model opera-
tions is described. Each model state chart (Model<n> State
Chart) may contain zero-to-many States (State<l>,
State<2>, . . ., State<n>). Events trigger the change between
one state and the next state (as indicated by “Action/Event”
on the association connectors). When an event occurs trig-
gering a state change one or more actions may be executed
(as indicated by “Action/Event” on the association connec-
tors). An action may be marked as an entry action for a state
or as an exit action for a state. Actions may also contain
zero-to-many subactions. A Model State Chart describes the
allowable states into which a model can enter, the actions
(operations) associated with entering that state, and the
actions (operations) associated with exiting from that state.

[0464] In the Model<n> State Chart, events cause a state
attribute to move between an Initial State, State<l>,
State<2>, State<3>, State<n>, and a Terminal State. The
Model<n> State Chart is read by a State Chart Handler that
includes a States Handler, a Signals Handler, and an Actions
Handler. As indicated by connector B in FIGS. 10 and 11,
the States Handler generates an enumeration implementa-
tion with an enumeration value for each state. As indicated
by connector C in FIGS. 10 and 11, the Signals Handler
generates a signal descriptor for each signal. As indicated by
connector D in FIGS. 10 and 11, the Signals Handler
generates a signal method descriptor for each signal. As
indicated by connector E of FIGS. 10 and 11, the Actions
Handler generates an Enter State Method Descriptor for
each entry action. As indicated by connector F of FIGS. 10
and 11, the Actions Handler generates an Exit State Method
Descriptor for each state exit action. The Model State
Enumeration and the Signals Descriptors are stored in the
Metamodel repository of the Component Integration Engine.
The Signal Method Descriptor, the Enter State Method
Descriptor, and the Exit State Method Descriptor are each
added to a Model Descriptor that, in turn, is stored in the
Metamodel Repository.

[0465] In FIG. 12 activity diagrams create method
descriptors or flowchart assemblies. Some activity diagrams
show the activity (operations) performed by a method (an
operation which is a feature on a model). These activity
diagrams are converted to Method descriptors and set on
model descriptors as a method descriptor. Some activity
diagrams show activity that is not specific to one model and
are transformed into flowchart assemblies. Flowchart assem-
blies are simply component assemblies designed to perform
a specific operation. Flowchart assemblies may use language
construct operations such as: loops, branches, variables, etc.
or may call static methods on models or instance methods on
instances. As discussed previously, component assemblies
are similar to models but have a shorter duration of use.

Jan. 6, 2005

Flowchart assemblies are given a name and saved in the
component integration engine as a component assembly.

[0466] A Model Method Descriptor or Flowchart Assem-
bly of the Component Integration Engine includes a Sub-
operation Descriptor including zero-to-many virtual opera-
tions (Virtual Operation<1l>, a Virtual Operation<2>, an
If/Else Operation, and Loop Operation). Some operations
may control which other operations are executed (If/Else
Operation) and others may control how many times other
operations are executed (Loop Operation). As shown in
FIG. 12, a Method<1> Activity Diagram includes a Pro-
cess<1> that transfers control to a Process<2> when Pro-
cess<1> terminates. If the If Condition of the If/Else Opera-
tion is satisfied, then Process<2> transfers control to
Process<3> else Process<2> transfers control to Pro-
cess<4>. After Process<3>, terminates, Process<3> transfers
control to Process<n> After Process<4> terminates, Pro-
cess<4> transfers control to Process<n>. Process<n> then
loops upon itself until the Loop Condition of the Loop
Operation is satisfied. Process<1> maps to Virtual Opera-
tion<1>. Process<2> maps to Virtual Operation<2>. The
If/Else decision diamond between Process<3> and Pro-
cess<4> maps to the If/Else Operation. Process<3> Maps to
the If Statement of the If/Else Operation. Process<4> maps
to the Else Statement of the If/Else operation. The decision
diamond for the loop for Process<n> maps to the Loop
Statement.

[0467] FIG. 13 illustrates some of the enumerations pre-
defined in the metamodel repository of the component
integration engine due to the enumerations’ use of UML.
New enumerations may be created and added just as with
any other modeling element.

[0468] As shown in FIG. 13, an Enumeration Implemen-
tation creates an Enumeration Instance. The Enumeration
Implementation includes the Attribute Implementations:
Name, Description, Type and Values. The Enumeration
Instance includes a Name, a Description, a Type and one or
more values (indicated by Value<l>, Value<l>, and
Value<ns>).

[0469] Also as shown in FIG. 13, are the Metamodel
Enumeration Instances of the Component Integration
Engine: Call Concurrency, Changeability, Model Stereo-
type, Constraint Stereotype, Constraint Kind, Language,
Multiplicity, Operation Kind, Parameter Kind, Scope, Vis-
ibility. The Metamodel Enumeration Instances are pre-
defined by the Metamodel Repository. The metamodel
repository allows for the definition of new enumerations, but
predefines those enumerations related to the metamodeling
process.

[0470] In FIG. 14, a user defines a Metahint Descriptor
that includes a Name, a Description and Attribute Descrip-
tors. This metahint descriptor is saved to the metamodel
repository (specifically in the meta-metarepository section
of the metamodel repository). As indicated by connector G
of FIGS. 14 and 15, the Metahint Descriptor is read by a
Metahint Impl(ementation) Generator, creates a Metahint
Implementation, and creates a Hint Descriptor of FIG. 15.
Instances of a metahint implementation are hint descriptors
that describe the model used to describe a hint.

[0471] As indicated by connector H of FIGS. 14 and 15,
the Attribute Descriptors are read by an Attribute Handler of



